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ABSTRACT 
Improvements in signal detection characteristics for a remote-
sensing instrument can be achieved at the expense of 
computational effort and the power associated with that effort.  
DSP used in remote sensing scenarios usually involves the 
detection of a signal and the estimation of parameters associated 
with that signal. Fortunately, the algorithms used for parameter 
estimation are the same algorithms that, through post-processing 
decision making, decrease the false alarm rate.  This post 
processing allows for the reduction in the false alarm rate as seen 
at the end product of the instrument.   The level of false alarm 
reduction must be balanced against the amount of additional power 
that is needed to produce this level.  This paper will present 
quantitative results that demonstrate this tradeoff for a specific 
application. 

This paper focuses on the detection of transient radio frequency 
(RF) events (e.g., lighting) as observed from the FORTÉ satellite.  
However, the methodology presented for power-aware 
improvement in signal detection is general enough to be applied to 
most remote-sensing scenarios.  A suite of algorithms, which vary 
widely in their precision of estimated parameters, is presented in 
the paper.  Equally wide in variation is the amount of power 
required by each of the algorithms.  Power requirements of the 
algorithms were obtained by actual physical measurement for a 
mimic of a RAD750 processor.  Algorithm performance was 
determined via Monte Carlo testing.  Using that same Monte 
Carlo testing post-processing, thresholds for each of the algorithms 
were developed for the reduction of the false alarm rate.  A 
quantitative display of how each of the algorithms decreases the 
false alarm rate over the front-end analog detection is displayed 
versus the power required  

Categories and Subject Descriptors 
D.3.3 [Military/Aerospace]:– power aware computing.  

General Terms  
Algorithms, Measurement, Performance 
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1. INTRODUCTION 
The Defense Advanced Research Projects Agency (DARPA) 
has supported the Los Alamos National Laboratory (LANL) 
Power Aware Computing and Communications (PAC/C) [1] team 
to develop an advanced signal processing payload concept derived 
from the joint LANL and Sandia National Laboratory FORTÉ 
satellite mission.  The objective has been to develop an intelligent 
payload system that processes received RF lightning signal data 
onboard the spacecraft in a power-aware manner [2].  The signal-
processing tasks include detection and parameter estimation. 

The desired receiver performance point of 100% probability of 
detection and 0% probability of false alarm is not obtainable, but 
improvements can be made via post-processing at the cost of 
power usage.  Evaluation of the results from the parameter 
estimation algorithms can be used to improved detection 
performance through expenditure of energy. 

The idea of Algorithm Power Modulation (APM) is intended to be 
used, where, a signal-processing algorithm is chosen, from a suite 
of four algorithms, to execute based on the available power, 
incoming event rate, and algorithm properties.  Each signal-
processing algorithm has an associated energy consumption and 
accuracy level which defines the decision trade space.  The 
payload is thus capable of processing data at varying levels or 
modes of operation as dictated by the current state. 

2. BACKGROUND 
For this work, we have focused on power-aware processing for a 
remote-sensing application similar in nature to the mission of 
FORTÉ.  The FORTÉ satellite was launched in August of 1997 
and carries a suite of instruments used for studying the optical and 
RF signals from lightning in the Earth’s atmosphere.  The results 
from FORTÉ have led to a better understanding of the relationship 
between optical and RF lightning events, and future satellite 
missions can even use this knowledge to help provide global 
lightning and severe-storm monitoring [3].  The processing 
algorithms for the RF lightning signals have been chosen in this 
study. 
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2.1 Ionospheric-Dispersed Signals 
A RF lightning event in the Earth's atmosphere generates a 
dispersed signal in the VHF spectral region. The dispersion is such 
that low frequencies of the signal are delayed, as it propagates 
through the ionosphere.  This is known as a “chirp” signal.  A 
simulated chirp signal is shown by the graph in Figure 1. The 
graph is an illustration of the time-domain signal where frequency 
decreases with increased time. 

The time taken for a given frequency of the chirp signal to arrive 
at the on-orbit receiver is related to the total electron content 
(TEC) of the ionosphere along the direction of the signal travel, 
the given frequency, and the signal time-of-arrival if ionospheric 
dispersion did not exist [4].   

 

 
Figure 1. Time vs. Amplitude Profile of Chirp 

The total electron content (TEC) represents the number of 
electrons in a unit-area cross-section of an ionospheric column 
along the signal path.  This atmospheric property is related to the 
propagation of radio signals through the ionosphere that can distort 
or bend the signals over the horizon.  TEC is also related to the 
surface temperature of the Earth, and thus, could be viewed as an 
indicator for storm severity. 

2.2 FORTÉ RF Hardware 
FORTÉ receives RF signals either from two orthogonal 
monopoles mounted at the satellite's base or by passive moderate-
gain antennas mounted on a 35-foot nadir-directed boom [5].  
There are two types of receivers tunable in 30-300 MHz bands, 
which consist of a mixer, bandpass filter, and a second mixer 
stage.  The first mixer up-converts the antenna signal to a higher 
frequency then passes the signal through the bandpass filter.  The 
second mixer then converts the band-limited signal to baseband.  
Depending on the type of receiver, either a 12-bit high-speed 
digitizer or an 8-bit digitizer is used.  The digitizers are in constant 
operation.  An analog trigger box processes the output from the 
second-stage mixer and determines whether or not the digitized 
data is to be recorded in payload memory.    The recorded data 
can then be down linked.  Data analysis is carried out as part of 
the ground operation at LANL.  Figure 2 shows a conceptual 
block diagram of the RF hardware.   

 
Figure 2. Detection and Data Acquisition Hardware  

The analog trigger box detects or rejects incoming signals based 
on double-threshold channel settings.  The analog signal is passed 
into frequency-separated channels through a set of bandpass 
filters in the trigger box.   Each of the eight channels has an 
analog trigger associated with it.  Once the signal present in the 
channel causes the threshold to be broken, detection in the channel 

is declared.  A detection is not declared until M ( )81 ≤≤ M  
channels exceed threshold.  This double threshold detection 
scheme produces better detection characteristics than that of a 
single channel alone.  Harrington’s method was used to determine 
the optimal in-channel thresholds for a given signal-to-noise ratio 
[6].  Figure 3 shows the receiver operating characteristic (ROC) 
curves for the simulated hardware of this paper.  Both continuous 
and discrete curves of the figure were derived from closed-form 
analytical solutions. 
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Figure 3. Detection Performance of Analog Trigger Box 

For a detection, two sets of data are generated by the parameter 
estimation algorithms.  First, the time of each channel’s detection 
is logged.  The center frequency of each bandpass filter can be 
paired with these time values.  This set of data yields a time 
history of when different frequencies of the chirp signal arrived at 
the satellite.  For the chirp signal, the highest frequency should 
arrive first then the next highest frequency should arrive and so 
on.  The function associated with these arrival times should be 
nonlinear in nature [4].  The second set of data yielded by full-
signal detect is the digitized time-domain waveform.  These two 
sets of data can be processed to estimate the value of TEC and 
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further more the estimate of TEC can be used to reduce false 
alarms. 

Unfortunately LANL failed to field any capability for on-orbit 
processing of the data sets.  An instrument known as the FORTÉ 
Event Classifier was developed and installed aboard the FORTÉ 
satellite.  The mission of the Event Classifier instrument was to 
implement on-orbit digital signal processing algorithms that could 
be obtained from either an onboard library or uplink from the 
ground.  However, the Event Classifier was never fully 
operational at launch and was turned on for testing only one time 
after launch [5].   Thus the Event Classifier instrument failed to 
provide any means for testing of new algorithms or concepts on 
orbit.  Therefore the work of this paper does not involve space-
based implementations. 

2.3 Algorithms 
Four algorithms are available to operate on the data in order to 
yield an estimate of the TEC value.  The four algorithms will be 
referred to as: 1) least-mean-squares (LMS), 2) maximum-
likelihood (ML), 3) software trigger box (ST), and 4) match-filter 
bank (MF).  Using only the time-frequency data pairs provided by 
the channels of the analog trigger box, the first two algorithms use 
curve-fitting techniques.  While the LMS is a deterministic 
algorithm, the ML is forced to be deterministic by only allowing for 
20 iterations to be performed [7].  The remaining two algorithms 
make use of the 2048-sample, 12-bit, digitized waveform data.  

Using digitized waveform data, the software trigger box algorithm 
utilizes frequency domain processing to provide an estimate of 
TEC.  The software trigger box algorithms first transforms the 
time-domain data into a non-overlap spectrogram composed of 
boxcar-windowed, 32-sample FFTs.  Upon determining the 
associated time indexes for the maximums of each of the 
seventeen non-negative frequency bins, a maximum likelihood 
algorithm is performed on the data pairs constructed from the bin-
maximum times and the center frequencies of the FFT bins. 

The MF algorithm also utilizes frequency-domain processing.  By 
generating simulated exemplar time-domain waveforms of 
different TEC and transforming them into the frequency domain, a 
bank of match filter can be constructed that spans the space of 
possible TEC values.  A correlation peak is rendered by 
performing a fast correlation algorithm on the waveform data and 
a TEC-specific filter.  Exploration of the match filter bank for the 
greatest correlation-peak value is done with a “focus-in” decision 
tree so that only ten fast correlations are performed to yield an 
estimate of TEC.  However, since the value of the winning peak is 
not quantized or hard constrained like the TEC estimate, this peak 
value will be used for post-processing detection work in this paper 
for the match-filter bank algorithm. 

2.4 Power Measurements 
Power usage measurements for the four algorithms were obtained 
through experiments conducted on a 266-MHz PowerPC 750 
microprocessor running the VxWorks™ operating system.  Both 
time-to-execute values and power usage estimates (RMS and 
peak current) were determined for the PowerPC 750.  The time-
to-execute values are average values over a test set of 21 trials 
cycled 20 to 100 times.  Each trial used synthetically generated 
data that simulated a chirp-signal event being received by a space-

base receiver system containing an analog trigger box and a 
waveform digitizer.  

Table 1. Power Measurements for PowerPC 750 

Algorithm Current 
(amps-peak) 

Execution 
Time 

Energy 

(Joules) 

Least Mean 
Squares  

2.06 3.4 µs 18.7e-6 

Maximum 
Likelihood 

2.06 183 µs 1.02e-3 

Software 
Trigger Box 

2.18 8.34 ms 47.3e-3 

Match Filter 
Bank 

2.04 470 ms 2.35 

 

Power usage for the PowerPC 750 executing the benchmaking 
code is presented in Table 1.  The Jet Propulsion Laboratory 
(JPL) power-aware testbed consists of a Wind River PPC750 
266-MHz processor board that is running VxWorks 5.4.2.  The 
processor operates at a constant 2.67V and current consumption 
is measured with a Tektronix TDS 7104 Digital Phosphor 
Oscilloscope.  Current is sampled with the Tektronix TCP202 
probe that is wired to the board.  Software compilation is done 
with a VxWorks Tornado 2.0.2 programming tools which uses the 
GNU C compiler.   

The software is compiled and downloaded to the testbed with the 
Tornado target server shell.  The programs are run until an 
“average” current signal snapshot is taken with the oscilloscope.  
The “average” signal is determined manually by watching the 
current response during several program runs.  The snapshot is 
taken when the current response produces a fairly consistent 
signal and consistent measurement value.  

2.5 Post-Processing Detection 
The output of the four algorithms can be compared against unique 
thresholds to determine if a false alarm has been generated by the 
analog trigger box.  Figure 4 shows the concept expressed in 
terms of its effect on the ROC curve.  Of course, lost detections 
can not be corrected for in post processing since the analog trigger 
box cues the collection of data and the execution of the 
algorithms.  Unique thresholds for each algorithm are needed 
since the algorithms arrive at their results differently and to the 
point of this paper, require different amounts of power to obtain 
those results. 
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Figure 4. Post-Processing Effect on ROC Curve 

3. DATA CREATION 
Using computer simulation and Monte Carlo experimentation, the 
data needed to derive post-processing thresholds and an estimate 
of performance of the thresholds can be created.  Parameters 
needed for the receiver simulation include the signal-to-noise ratio 
(SNR) and analog trigger box thresholds, both single channel 
amplitude thresholds and a binary threshold.  For the Monte Carlo 
experiment, knowledge of the expected probability of detection 
and probability of false alarm aid in the selection of the number of 
trials.  Once parameters are specified, data is created by 
exercising a receiver simulation and placing the results of the 
algorithms in the appropriate logging array.  A parameter-
estimation algorithm results are separated between a logging array 
that collects results for a true detect and a logging array that 
collects results for a false alarm.  The conditions of detect and 
false alarm related to the decision made by the analog trigger box.  
Thus for each trial of the Monte Carlo experiment, if the 
simulation provides a detect or a false alarm, data is logged for 
each algorithm.  It should be pointed out that not every trial will 
produce logged data since conditions of missed detections and 
proper rejection are not logged. 

For a truly random experiment, the values of probability of 
detection and probability of false alarm determined by the trigger 
box guide the selection of the number of trials.  Of course in terms 
of the design of a Monte Carlo experiment, the number of trials 
also governs the precision of the resulting estimates of probability 
of detection and probability of false alarm.  Therefore, having an 
analytical solution of the ROC curve, for a give SNR is valuable.  
The ROC curve shown in Figures 3 and 4 is used in this 
experiment.  From a data logging perspective, it is desirable to 
construct arrays that are large enough that meaningful histograms 
can be derived from them. 

With assuming the least about the a priori probabilities, maximum 
entropy is employed by the use of uniform density functions for 
trial generations.  For a truly random experiment, this means that 
whether a signal is present along with the Gaussian noise is 
determined by a binary-uniform-random-number generator.  Thus 
for each trial, there is an equally likely chance that a signal is or is 

not present along with the noise.  If a signal is present, the value 
of the TEC parameter associated with that signal is generated by 
a random number generator that has a continuous uniform 
distribution for all valid values of TEC.  Of course the noise 
component of every signal is generated by a normally-distributed, 
continuous random number generator. 

For this paper the parameters of both the simulation and the 
Monte Carlo experiment were selected for computing feasibility 
and plausibility of the scenario.  The signal to noise ratio 
associated with each channel of the analog trigger box, was 
selected to be 3dB.  Examining the ROC curve of the analog 
trigger box, the detection point 2-of-8 channels detects was 
chosen to be used in this paper.  Thus the binary threshold is set at 
2 and the individual channel thresholds are determined via the 
Harrington’s method [6].  The number of trials was set to 100,000.  
This number of trials should yield enough logged false alarms to 
construct a meaningful histogram. 

4. THRESHOLD DETERMINATION 
The Monte Carlo experiment provides the data needed to 
approximate the relevant pdfs (probability density functions) 
needed for the determination of the thresholds.  For each of the 
algorithms, data was collected during the experiment that recorded 
the value of the estimated TEC or correlation peak for the case of 
detect and for the case of a false alarm.  The conditions of detect 
and false alarm refer to the decision being solely made by the 
trigger box.  These data can now be used to compute normalized 
histograms that estimate conditional probability density functions.  
Two conditional pdfs are computed for each algorithm; the 
probability of estimated TEC (or correlation peak) value given true 

detection, ( )D|TECp  and the probability of estimated TEC 

(or correlation peak) value given a false alarm, ( )FA|TECp .  
Under Bayes’ Detection and the Min-Max Criterion were all cost 
are the same, the two conditional pdfs are the likelihood functions 
that populate the decision space. 

Relative positioning of the conditional pdfs in the decision space 
will determine what can be achieved by implementing detection 
thresholds in the space.  Reduction in the probability of false 
alarms may come at the cost of a reduction in probability of 
detection.  In fact this cost in probability of detection is the case 
for all the algorithms except the MF algorithm.  For the first three 

algorithm, the ( )D|TECp is girdled by ( )FA|TECp .  This 
relationship between two likelihood functions is different than what 
is usually dealt with in signal detection texts.  In most texts on the 
subject the likelihood functions have a relationship of “overlapping 
tails” in the decision space.  Still the with some scarifies of 
probability of detection, the relationship of one likelihood function 
girdled by another that spans a large range of the decision space 
can be used to reduce the probability of false alarm. 

The methodology for determination of the threshold values in the 
decision space is presented. First an acceptable loss in probability 
of detection most be specified. For this paper an acceptable 
absolute loss in probability of detection is 4%.  Once a loss is 
specified, the area underneath the likelihood function condition on 
detection can be determined by subtracting the ratio of the 
specified probability of detection loss to the current probability of 
detection from one. 
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DP
TECpunderArea

LossSpecified
)|( 1 −=D  

With the area derived, two thresholds in the decision space must 
be determined so that in between the two thresholds the area 

underneath ( )D|TECp  is equal to the area derived from the 
specified loss in probability of detection.  With the above being a 
condition and the reasonable condition that the thresholds must 
include the full range of legitimate values for TEC, 

1816 105105 ×≤≤× TEC , thresholds can be initially placed.  
At this point the rough placement of the thresholds can be 
determined by the used of autonomous algorithm. 

The autonomous algorithm used in this paper assumed an 
approximately symmetric, uni-modal likelihood function to 
determine thresholds.  Since the likelihood function of 

( )D|TECp  is assumed to be uni-modal, the first step in the 
algorithms was to find the maximum value of the function.  From 
the maximum-value abscissa location, the needed area underneath 
the function is determined by expanding on both sided along the 
abscissa in manner so that one threshold is approximately the 
same distance from the mode as the other threshold.  The first 
condition of required area is met in this way.  Next both thresholds 
are evaluated for compliance to constraints of the problem. 

The assumption of a uni-modal likelihood function lacks validity to 
some extend, thus the thresholds derived from the assumption 
must be examined and, if necessary, adjusted to comply with the 
constraints of the problem.  In the ideal case, the Monte Carlo 
experiment of this paper would have yielded a likelihood function 
that is a uniform pdf with limits that are the valid values of TEC.  
However, the parameter estimation algorithms are not ideal, so 
outlying estimates exist and the profile of the pdf can not be 
assumed to be uniform.  The resulting thresholds must be 
examined to make sure that all valid values of TEC are inclusive.  
If not the threshold values are shifted so as to include the valid 
values and still maintain the desired area of the function.  As an 
example, this adjustment may involve shifting both thresholds to 
the left or right by an equal number of abscissa bins. Clearly the 
final selection of the threshold values has a heuristic component to 
it.  The result is threshold values related to TEC estimation that 
are sensible and should result in a decrease in the probability of 
false ala rm. 

The derived thresholds now can be used to calculate an estimate 
of resulting probability of false alarm due to post processing of the 
results from the parameter estimation algorithm.  For the Monte 

Carlo experiment the conditional pdf of ( )FA|TECp  is 
utilized.  The area under the conditional pdf between the two 
thresholds is calculated to determine the resulting probability of 
false alarm.  With post processing of results from the parameter 
estimation algorithm, new detection criteria can be imposed and 
the resulting performance can be estimated. 

4.1 Example Calculation 
Decisions about the validity of the results from the exercising of 
the least-mean-squares algorithm have to be made before the pdfs 
can be constructed.  The number of valid detections processed by 
the LMS algorithm was 28,003 and the number of false alarms 

processed was 3658.  These numbers are the same for all four 
algorithms since they are determined by the performance of the 
analog trigger box simulation.  Under the constraints of the 
experiment these number yield a probability of detection of 55% 
and probability of false alarm of 7.3% for the analog trigger box.  
These numbers are close to analytical predictions of   53% for 
probability of detection and 4.7% for probability of false alarm.  
What different there is between the Monte Carlo results and the 
analytical results are most likely due to assumptions made in 
deriving  the analytical   solution [6].  The results from the Monte 
Carlo simulation can be considered valid. 

In order to determine detection thresholds for the results of the 
LMS parameter estimation algorithm, two conditional pdfs must be 
constructed.  There are 28,003 estimated TEC values available for 

the construction of the ( )D|TECp and 3658 values available 

for the construction of the ( )FA|TECp .  Histograms will be 
used to construct estimates of the two conditional probability 
density functions.  After some investigation it was determined that 
500 bins would be used to construct all histograms.  Figure 5 
shows the histogram estimates of the two conditional pdfs.  Shown 
in the figure are to overlapping uni-modal pdfs. 

Setting of the detection-acceptance thresholds involves integrating 
area under the two curves.  First thresholds are set so that area 
under pdf conditioned on detect relates to an overall loss of 
detection performance of 4%, which corresponds to a conditional 
pdf area of 99.93%.  For the most part this area is defined by 
symmetrically expanding from the mode.  The associated 
probability of false alarm can then be estimated from the area of 
the pdf conditioned on false alarms that is defined by the two 
thresholds.    The amount of probability defined by this area is 
used to scale the value of probability of false alarm due solely to 
the analog trigger box. 

-3 -2 -1 0 1 2

x 10
20

0

0.05

0.1

0.15

0.2

0.25

0.3

Estimated TEC Value

P
ro

b
ab

ili
ty

 D
en

si
ty

Histograms Estimates of Coditional Probability Density Functions

p(TEC ?  Detection )
p(TEC ?  False Alarm)

Lower
Threshold 

Upper
Threshold 

 
Figure 5. Histogram Estimates of Conditional Probability 

Density Functions for LMS Algorithm 

4.2 Thresholds and Estimated Performance 
An examination and analysis of all the results from the Monte 
Carlo experiment yielded the following thresholds for the four 
parameter-estimation algorithms. 

Table 1. Thresholds for Parameter Estimation Algorithms  
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Algorithm Left Threshold Right Threshold 

Least Mean 
Squares  

-1.9913e19 (e-/m2) 1.0553e19 (e-/m2) 

Maximum 
Likelihood 

-8.8654e18 (e-/m2) 5e18 (e-/m2) 

Software Trigger 
Box 

5e16 (e-/m2) 5e18 (e-/m2) 

Match Filter Bank 137.2017 (peak 
number) 

 Infinity  (peak 
number) 

Performance estimates about the four algorithms and their 
associated thresholds presented in Table 1, can be made with 
some analysis.  First the area between the thresholds for both of 
the pdfs must be determined.  This operation will provide two 
values of probability that can be used to scale the probability of 
detection and probability of false alarm associated with the analog 
trigger box.  Table 2 gives the resulting estimates of performance 
for the four algorithms based on this procedure. 

 

 

Table 2. Prediction in Detection Performance 

Algorithm Probability of 
Detection 

Probability of 
False Alarm 

Least Mean 
Squares  

51.26% 3.55% 

Maximum 
Likelihood 

50.58% 3.61% 

Software Trigger 
Box 

50.81% 2.90% 

Match Filter Bank 51.25% 4.06e-003% 

 

One point to note is that the probability of detection for the MF 
algorithm could have been increased since only 

the ( )D|TECp  is present at the left threshold value.  The 
figure below shows the relationship of the two conditional pdfs. 
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Figure 6. Histogram Estimates of Conditional Probability 

Density Functions for MF Algorithm 

5. VALIDATION EXPERIMENT 
In order to valid the concept of using the parameter estimation 
algorithms to improve detection performance, another hundred 
thousand trial Monte Carlo experiment was performed.   This 
experiment made use of the calculated thresholds to test the 
detection validity of each trial.  Of course since the true nature of 
each signal is know, detection performance numbers can be 
determined for each algorithm.  The results of the experiment are 
shown in Table 3. The experiment result for the probability of 
detection of the analog trigger box was 54.86% and its probability 
of false alarm was 7.25%.   

 

 

Table 3. Monte Carlo Results for Detection Performance 

Algorithm Probability of 
Detection 

Probability of 
False Alarm 

Least Mean 
Squares  

50.75% 3.58% 

Maximum 
Likelihood 

50.75% 3.74% 

Software Trigger 
Box 

52.60% 2.01% 

Match Filter Bank 50.79% 0 

6. RESULTS 
From the results of the validation experiment, a difference 
between the four algorithms is present.   False alarms are reduced 
most dramatically by the match-filter bank algorithm.  They were 
reduced to a level below what could be determined by the Monte 
Carlo experiment where 50-thousand opportunities were 
presented.  The software trigger box algorithm provided the 
second greatest reduction in false alarms by nearly a factor of 4 
better than the analog trigger box.  The least-mean squares and 
maximum likelihood algorithms performed approximately the same 
and provide the least improvement of the four algorithms.  
Roughly a factor of two decrease in probability of false alarm is 
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achieved by the post-processing of the results of these two 
parameter estimation algorithms.   

The correlation of these results with each algorithms energy 
usages is presented in the figure below.  A general relationship 
can be stated that the more energy that is expended, the greater 
the reduction in the probability of false alarm.   

 
Figure 7. Detection performance improvement shown on 

ROC curve with associated energy usage. 

Figure 8 shows the relationship between energy usage and 
probability of false alarm performance.  Ignoring the ML-labeled 
point, the graph shows that several orders in magnitude of energy 
(expended) are needed for a meaningful improvement in 
probability of false alarm.  However, it does show that with 
enough energy, the false alarm probability can be made zero (or 
close to zero). 
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Figure 8. Energy Cost versus Probability of False Alarm for 

the Four Post-Processing Algorithms  

7. CONCLUSIONS 
The work presented in this paper shows that in situ parameter 
estimation algorithms can be used to improve detection 
performance, or more precisely reduce the probability of false 
alarm. Thus post-processing of data can yield improvements in 
detection performance. Also, this work shows that the cost of this 
reduction in probability of false alarm can be measured in energy 
usage.   In fact for the case presented in this paper, orders of 
magnitude more energy needs to be expended to produce 

significant reductions in false alarms.  One point that should be 
noted is that the information must be available in the data provide 
for any expenditure of energy to be of value. 

Information availability could be the reason two of the algorithms 
reduced probability of false alarm near equally.  Both the LMS 
and ML algorithms use only the data provide by the analog trigger 
box.   However, the two algorithms require different usages of 
energy.  The difference in energy is by a factor of approximately 
50, which is very significant.  These relationships could be 
explained in terms of information content. That is all the available 
information for the improvement of false alarms contained in the 
data that was provided was exhausted by the LMS algorithm.   
There may be no unused information for the ML algorithm to 
reduce the probability of false alarm than what was accomplished 
by the LMS algorithm.  This leads to the conclusion that if the 
information is not present, no amount of energy expended in post 
processing will improve detection performance. 
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